My Notebook

半句再见

Diffusion Model

解读最近大火的Diffusion Model

Overview 这篇博客介绍了扩散模型(Diffusion Model)的整体框架,其中包含了详细的数学推导,希望能够让读者对扩散模型有更加深刻的认识。 不同生成模型间的关联和区别 GAN:生成式对抗网络,使用一个判别器来分类真实样本和生成的样本,另外用一个生成器从噪声出发生成伪样本,两者对抗训练直到判别器无法分辨出真实样本和生成的样本。 VA...

论文笔记

Debiasing Distantly Supervised Named Entity Recognition via Causal Intervention

原文地址:https://aclanthology.org/2021.acl-long.371/ 代码地址:https://github.com/zwkatgithub/DSCAU 摘要 这篇文章使用因果干预(Causal Intervention)的方法来去除命名实体识别(NER)任务中的字典偏差的问题。作者通过SCM解释了字典偏差中的两部分偏差的来源,然后分别通过后门调...

论文笔记

Counterfactual VQA A Cause Effect Look at Language Bias

代码已开源:https://github.com/yuleiniu/cfvqa/ 背景与动机     VQA(视觉问答)系统以一张图片和一个关于这张图片形式自由、开放式的自然语言问题作为输入,以生成一条自然语言答案作为输出。它是视觉对话、视觉阅读理解和多模态推理等任务的基础。     A VQA system takes as input an image and a free...

论文笔记

Towards Controlled and Diverse Generation of Article Comments

Towards Controlled and Diverse Generation of Article Comments Introduction 自动文章评论的任务需要机器理解文章,并生成流畅的评论。这个任务有不错的应用价值,同时也有很好的研究价值。例如,不同于机器翻译或者文本摘要,自动文章评论生成可以是多样化的。对于同样一篇文章,可以从不同的角度生成不同的合适的评论。 这个任务目...

论文笔记

Towards Robust Neural Retrieval Models with Synthetic Pre-Training

Towards Robust Neural Retrieval Models with Synthetic Pre-Training 引言 传统的稀疏检索模型,如BM25和TF-IDF依赖于简单的字词匹配,而深度检索模型,如DPR,将查询句和文档分别编码为连续向量表示,然后计算其向量表示之间的相似性。 诚然,深度检索模型取得了巨大的成功,但是他们都是遵循着标准的有监督学习的方式——训练...

论文笔记

DYPLOC - Dynamic Planning of Content Using Mixed Language Models for Text Generation

DYPLOC - Dynamic Planning of Content Using Mixed Language Models for Text Generation 来自ACL21,代码已开源 Github地址 Motivation 研究的问题:观点长文本生成 目前面临的挑战: 现有的神经网络生成方法缺乏一致性,因此需要使用content planning的方法 ...

论文笔记

SetRank - Learning a Permutation-Invariant Ranking Model for Information Retrieval

SetRank: Learning a Permutation-Invariant Ranking Model for Information Retrieval 来自SIGIR20,代码已开源https://github.com/pl8787/SetRank Introduction 传统的排序学习模型通常是基于概率排序原则Probability Ranking Princi...

论文笔记

Learning Groupwise Multivariate Scoring Functions Using Deep Neural Networks

Learning Groupwise Multivariate Scoring Functions Using Deep Neural Networks 来自ICTIR2019,https://doi.org/10.1145/3341981.3344218 代码见https://github.com/tensorflow/ranking Motivation 不同于分类或...

论文笔记

Learning a Deep Listwise Context Model for Ranking Refinement

Learning a Deep Listwise Context Model for Ranking Refinement 论文来自SIGIR18,https://arxiv.org/abs/1804.05936 代码已开源:https://github.com/QingyaoAi/Deep-Listwise-Context-Model-for-Ranking-Refineme...

论文笔记

Fixed That for You - Generating Contrastive Claims with Semantic Edits

Fixed That for You: Generating Contrastive Claims with Semantic Edits 来自NAACL 2019, https://www.aclweb.org/anthology/N19-1174.pdf 代码已开源,https://github.com/chridey/fixedthat Motivation 辩论的...

论文笔记

Sentence Level Content Planning and Style Specification for Neural Text Generation

Sentence-Level Content Planning and Style Specification for Neural Text Generation 来自EMNLP 2019,https://www.aclweb.org/anthology/D19-1055.pdf 代码已开源:http://xinyuhua.github.io/Resources/emnlp1...

论文笔记

PAIR Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation

PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation 来自EMNLP 2020:https://arxiv.org/abs/2010.02301 代码已开源:https://github.com/XinyuHua/pair-emnlp2020 ...

论文笔记

CoCon A Self-Supervised Approach for Controlled Text Generation

CoCon: A Self-Supervised Approach for Controlled Text Generation Motivation 在使用语言模型做文本生成的任务时,给定提示文字 $x_{:t-1}=\{x_1,\cdots,x_{t-1}\}$,后续的文本 $\{x_{t}, \cdots, x_{l}\}$ 是通过自回归的方式生成的: \[p\left(x_{t...

论文笔记

Content preserving text generation with attribute controls

Content preserving text generation with attribute controls 来自NIPS 2018 https://papers.nips.cc/paper/7757-content-preserving-text-generation-with-attribute-controls.pdf 代码已开源,第三方实现见 https://g...

论文笔记

Improved Semantic Representations From Tree Structured Long Short Term Memory Networks

Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks 来自ACL 2015 代码已开源,https://github.com/stanfordnlp/treelstm 第三方TensorFlow实现:https://github.com/tensorfl...

论文笔记

Reinforced Rewards Framework for Text Style Transfer

Reinforced Rewards Framework for Text Style Transfer 来自ECIR 2020 Introduction 文本风格迁移是在保留文本的核心内容的前提下,将给定文本的风格迁移为另一种目标风格的一个任务。现有的方法在训练时主要使用了word-level的目标函数,而它与任务所期望的指标(内容保留和迁移强度)不一致。任务期望的指标通常在...

论文笔记

Plug and Play Language Models A Simple Approach to Controlled Text Generation

Plug and Play Language Models: A Simple Approach to Controlled Text Generation 来自 ICLR 2020,https://arxiv.org/pdf/1912.02164.pdf 代码已开源,https://github.com/uber-research/PPLM 官方博客见 https://...

论文笔记

Toward Controlled Generation of Text

Toward Controlled Generation of Text 来自ICML 2017,https://arxiv.org/pdf/1703.00955.pdf 代码已开源:https://github.com/asyml/texar/tree/master/examples/text_style_transfer Introduction 近些年来,研究人员对...

论文笔记

SGM Sequence Generation Model for Multi-Label Classification

SGM: Sequence Generation Model for Multi-Label Classification 来自COLING 2018,https://www.aclweb.org/anthology/C18-1330.pdf 代码已开源,https://github.com/lancopku/SGM Motivation 作者认为现有的模型通常存在两点不...

论文笔记

Label Specific Document Representation for Multi-Label Text Classification

Label-Specific Document Representation for Multi-Label Text Classification 来自EMNLP 2019,https://www.aclweb.org/anthology/D19-1044/ 代码已开源: https://github.com/EMNLP2019LSAN/LSAN Introduction...

论文笔记

LexicalAT Lexical-Based Adversarial Reinforcement Training for Robust Sentiment Classification

LexicalAT: Lexical-Based Adversarial Reinforcement Training for Robust Sentiment Classification 来自EMNLP 2019,https://www.aclweb.org/anthology/D19-1554.pdf 代码已开源 https://github.com/lancopku/Le...

论文笔记

Improving Multi-turn Dialogue Modelling with Utterance ReWriter

Improving Multi-turn Dialogue Modelling with Utterance ReWriter 来自ACL 2019,https://arxiv.org/pdf/1906.07004.pdf Introduction 单轮对话建模已经取得令人瞩目的进展,但是多轮对话的表现还远远不能令人满意。作者认为,主要的原因是我们的日常对话中存在着大量的指代和...

论文笔记

Seq2Emo for Multi-label Emotion Classification Based on Latent Variable Chains Transformation

Seq2Emo for Multi-label Emotion Classification Based on Latent Variable Chains Transformation 来自AAAI 2020 https://arxiv.org/pdf/1911.02147.pdf Motivation: 当前很多方法在做文本的情绪识别任务时,都将其建模为一个多标签分类(Mu...

论文笔记

Is Word Segmentation Necessary for Deep Learning of Chinese Representations?

Is Word Segmentation Necessary for Deep Learning of Chinese Representations? 来自ACL 2019,https://www.aclweb.org/anthology/P19-1314.pdf Introduction 在中文自然语言处理领域,分词已经被认为是一个基本的预处理手段。但是作者对分词的必要性提...

论文笔记

EDA Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks

EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks 来自EMNLP 2019 short paper,https://arxiv.org/abs/1901.11196.pdf 代码已开源https://github.com/jasonwei20/...

论文笔记

A Deep Reinforced Sequence-to-Set Model for Multi-Label Text Classification

A Deep Reinforced Sequence-to-Set Model for Multi-Label Text Classification 来自AAAI 2019,https://arxiv.org/pdf/1809.03118.pdf 代码已开源 https://github.com/lancopku/Seq2Set Introduction 多标签文本分类...

LeetCode递归题解

递归专题

938. Range Sum of BST 题目链接见 https://leetcode.com/problems/range-sum-of-bst/ Given the root node of a binary search tree, return the sum of values of all nodes with value between L and R (incl...

Leetcode动态规划题解

动态规划

动态规划(Dynamic Programming) 3. Longest Substring Without Repeating Characters 题目链接 https://leetcode.com/problems/longest-substring-without-repeating-characters/ Given a string, find the length...

论文笔记

Graph Convolutional Networks for Text Classification

Graph Convolutional Networks for Text Classification Introduction 文本分类是自然语言处理中一个很基础的问题。文本分类中的一个基本的中间步骤是文本表示,传统的方法使用人工提取的特征来表示文本,如词袋和n-gram等。深度学习的模型,如CNN,LSTM等考虑到了局部性和顺序性,他们可以很好地捕获局部连续的单词中的语义和语法信息...

论文笔记

BERT论文笔记

Bert论文笔记 本文是个人在阅读Bert原论文的笔记,作为日后回顾时参考。 Motivation 预训练的语言模型已被证明在许多自然语言处理任务上很有效,包括自然语言推断,命名实体识别,智能问答等。目前有两种主流的策略将预训练的语言表示应用到下游任务上,一种策略是基于特征(feature-based)的,另一种是微调(fine-tuning)。前者的典型代表是ELMo,它使用...